Autoregressive Modeling and Feature Analysis of DNA Sequences

نویسندگان

  • Niranjan Chakravarthy
  • Andreas Spanias
  • Leonidas D. Iasemidis
  • Kostas Tsakalis
چکیده

A parametric signal processing approach for DNA sequence analysis based on autoregressive (AR) modeling is presented. AR model residual errors and AR model parameters are used as features. The AR residual error analysis indicates a high specificity of coding DNA sequences, while AR feature-based analysis helps distinguish between coding and noncoding DNA sequences. An AR model-based string searching algorithm is also proposed. The effect of several types of numerical mapping rules in the proposed method is demonstrated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MODELING THE STOCHASTIC BEHAVIOR OF THE FARS RIVERS

Historical records for rivers in Fars Province are inadequate in comparison with the design period of hydraulic structures. In this study, time series techniques are applied to the records of three Iranian rivers in the Fars Province in order to generate forecast values of the mean monthly river flows. The autoregressive models (AR), moving average models (MA) and autoregressive moving ave...

متن کامل

روشی جدید برای تفکیک و طبقه‌بندی توالی‌های سرطانی و غیرسرطانی DNA با استفاده از الگوریتم‌های مبتنی بر LPC و SVD

The growing pace of cancer has encouraged researchers to deliberate several aspects of this malignant disease. Genetic-induced nature of cancer, heighten the importance of studying intra-cell components. This paper has been carried out with the aim of making some specific and unique features clear from those long DNA sequences by employing well-established DNA sequence analysis techniques. The ...

متن کامل

Electrocardiogram Features Extraction and Classification for Arrhythmia Detection

This paper present a new automated detection method for cardiac arrhythmia. The detection system is implemented with integration of feature extraction and classification parts. In feature extraction phase of proposed method, the feature values for each arrhythmia are extracted using autoregressive (AR) and multivariate autoregressive (MVAR) modeling of one-lead and two-lead electrocardiogram si...

متن کامل

Statistical trend analysis and forecast modeling of air pollutants

The study provides a statistical trend analysis of different air pollutants using Mann-Kendall and Sen’s slope estimator approach on past pollutants statistics from air quality index station of Varanasi, India. Further, using autoregressive integrated moving average model, future values of air pollutant levels are predicted. Carbon monoxide, nitrogen dioxide, sulphur dioxide, particu...

متن کامل

Modeling Gasoline Consumption Behaviors in Iran Based on Long Memory and Regime Change

In this study, for the first time, we model gasoline consumption behavior in Iran using the long-term memory model of the autoregressive fractionally integrated moving average and non-linear Markov-Switching regime change model. Initially, the long-term memory feature of the ARFIMA model is investigated using the data from 1927 to 2017. The results indicate that the time series studied has a lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004